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Abstract
Modern trends in software engineering such as dynamic programming features, extensive use of
third-party libraries or various different execution environments are posing hard challenges for static
analysers. Therefore the use of Abstract Interpretation is limited. Dynamic analysis methods
are often not constrained by these practices. Therefore, it seems obvious to combine Abstract
Interpretation with different dynamic analysis methods to mutually compensate each disadvantages.
This elaboration will recap on a few ways to combine Abstract Interpretation and dynamic analysis.
Also problems that still need to be solved are shown.
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1 Introduction

Modern applications are no longer created like conveyor belts that have a linear execution
flow, use only simple data structures and a small enclosed set of standard libraries. To
improve productivity and portability, software engineers interact with large, complex libraries,
frameworks and vastly different runtimes to provide the scaffolding on which an application
can be created. Traditionally these frameworks and libraries are using a lot of dynamic
language features which are known to not work well with Abstract Interpretation. In some
cases the libraries are not even written in the same languages as the applications using
them. Often Abstract Interpretation finds itself in a quandary, ignoring some of the dynamic
features violates the soundness assumption, analysing them increases the calculation time
by large factors and often also produces a lot of false positives. Therefore dynamic analysis
methods can be used to refine the Abstract Interpretation process and help with solving
those burdens. This elaboration will give a short insight how dynamic program analysis
works and then show some methods on how to combine Abstract Interpretation and dynamic
analysis.

2 Dynamic analysis

Dynamic analysis is the analysis of the properties of a running program. In contrast to static
analysis where textual program representation is over-aproxiamted, dynamic analysis derives
properties that are valid for at least one program execution by inspection of the running
program. The program can be analysed by observing e.g its memory state or transitions.
Dynamic analysis is sometimes also called input-centric or program-centric [3] due to the
stark relation of program inputs to the resulting analysed program behaviour. The analysis
precision is also better than with static analysis methods because all found properties are
from actual executions of the program, resulting in less false positives. As a dynamic analysis
usually inspects one long program trace through the whole program semantic dependencies
widely separated in this trace can be found. In addition dynamic analysis is often much faster
than static analysis due to the reduced scope of analysed program traces and properties.
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3 Combining static and dynamic analysis methods

In the following section a variety of techniques to refine Abstract Interpretation with
dynamic analysis methods, working around some shortcomings of Abstract Interpretation,
are presented.

3.1 Opaque code analysis
In modern software development most of the code that gets bundled in a shipped application
is not written by the actual developers but included from third party libraries. These
libraries are quite often several orders of magnitude larger than the actual code written by
the developers. Abstract interpreters need to decide to either include the library’s code in
the analysis and as a result increase the computation time significantly, or to not analyse
the library code and, as a result of missing some code-behaviour, produce possibly unsound
results.

A obvious workaround for this problem is to provide an abstract model of the public
accessible library functions. The clear disadvantage of this approach is the ginormous overhead
that is introduced by modelling libraries by hand due to their vast size and the huge amount
of libraries used. There are also various approaches to create this models automatically from
specification of the code behaviour [18, 21]. This is unfortunately not always possible due to
the lack of appropriate specification or sometimes no usable documentation at all.

Another approach is to learn the expected behaviour via dynamic execution [15, 7], but
these methods are either unsoundly modelling a subset of the executions or are confronted
with an explosion of possible traces to analyse. Therefore, specific analysers for specific
Libraries are needed. This concludes a lot of manual work too.

In Javascript the built-in standard library is provided by the host environment e.g.
webbrowsers. This library is for the most parts not implemented in Javascript and the different
host environments use a multitude of different languages to implement the standard library.
Googles v81 ist written in C++, Nashorn 2 is written in Java and Mozillas Spidermonkey 3

is written in C++ and Rust. An abstract interpreter is in need to understand all of these
quite different languages in order to soundly abstract a Javascript program which uses the
standard library.

3.1.1 Sample-Run-Abstract
J. Park et al. propose an automatic modelling methods for opaque Javascript code [11].
Although the mechanism cannot guarantee a sound over-approximation for all of the builtin
library functions, they are able to compute models for a large part of the Javascript standard
library. Compared to the previous state of the art analysis methods based on manually
created models, they increased the analysis precision and also found errors in the manual
generated models. They named their new model the Sample-Run-Abstract (SRA) model.
For SRA to work, three preconditions for an abstract analyser A and a dynamic analyser Z

must be given:

An abstract state domain Ŝ which forms a complete lattice.

1 https://v8.dev/
2 https://openjdk.org/projects/nashorn/
3 https://spidermonkey.dev/
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An abstraction function α and a concretization function γ.
Either A or Z are required to identify the sourcecode corresponding to a given program
point.

The analysis then starts as a usual Abstract Interpretation with the entrypoint of the
program. Abstract Interpretation continues until the execution reaches a program point
c ∈ C where a library function is used.

Sample Ŝ → α(S) At this point the current abstract state ŝ ∈ Ŝ is converted to a finite
subset of elements s ⊆ γ(ŝ). If ŝ represents a concrete value or a small set of values
s = γ(ŝ) otherwise a Sample heuristic chooses representative values of all the possible
values in γ(ŝ).

Run C × S → S For each Sampled value and the current program point, executable code
is generated. The dynamic interpreter executes this code, takes a snapshot of the program
state after execution and returns this state.

Abstract α(S) → Ŝ For each of the given concrete state α generates a corresponding
abstract state. These states are joined and one abstract state representing a program
point after the library code is returned.

If Sample has to choose a set of values from the abstract state then the dynamic analyser
executes only a subset of the possible program traces. Therefore, the resulting states after
Run might be a under-approximation of possible states. The Abstract step then consequently
produces an unsound abstract state. To cope with this problem J. Park et al. recommend a
optional Broaden 4 heuristic similar to the widening operators that should be applied to
cope with the unsoundness.

3.1.2 Mostly-Concrete Interpretation
The SRA aproach ist suitable for library code that is called from the application but some
problems are present in applying SRA to (enterprise) frameworks such as Spring 5 or Struts
6. Frameworks are typically using a lot of programming techniques that are troublesome for
Abstract Interpretation e.g. reflections, dynamic dispatch or embedded DSLs. Commonly
the framework-code calls into functions located in the application code, defined in some
sort of configuration. In most frameworks this configuration is statically parseable and not
dependent on run-time values [19]. Another commonality in projects that use frameworks is
a design-pattern called state separation "which requires that the application state is opaque
to the framework implementation and similarly for framework state and application code"[19,
p.4]. As a consequence the program state can be partitioned into a framework state R and
an application state R̂, forming a complete lattice with concretization function γ(R̂)A and
abstraction function α(R)A forming the Galois connection R −−−−→←−−−−

αA

γA

R̂.
Based on this two assumptions John Toman and Dan Grossman developed the Concerto

framework [19]. Concerto soundly combines a dynamic concrete interpretation with Abstract
Interpretation. This combination fits well, as a specific framework routine combined with
an application specific configuration usually lead to a single execution trace through the
frameworks code. This trace is analysed with a concrete interpreter and as it is executing the

4 Broaden is similar to a widening operation, as it widens the possible abstract values. For an example of
a Broaden heuristic see [11, p. 52].

5 https://spring.io
6 https://struts.apache.org/
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code with concrete values, the mentioned dynamic language features are no problem. The
application code which often contains loops and nondeterministic user input is analysed by
Abstract Interpretation. So both analysis methods compensate for each other’s weaknesses.
To convert between the framework-state and application-state the abstraction function α

and concretization function γ could be utilised. This conversion is necessary every time
the execution context switches between framework-code and application-code. Given the
preconditions this approach is sound but unfortunately infeasible to implement as the
concretization and abstraction functions are required to work with possibly infinite large
sets of values. To overcome this limitation the authors extended the concrete interpretation
to mostly-concrete interpretation by allowing only finite sets of values. Additionally, the
concretization and abstraction functions are replaced by domain transformers defined as the
equation 12 and 13 in [19] which are weaker that a Galois connection but can still assure a
sound transfer of state between the two domains.

With finite domains, the two domain transformers and the state separation as prerequisites,
Concerto can soundly combine the abstract and the mostly-concrete interpreter. In case the
state separation is violated e.g. application code is accessing a frameworks internal data-
structure directly, Concerto can still soundly continue the analysis with reduced precision by
assuming accessed value as ⊤.

3.2 Dynamic Shortcuts through sealed execution

In recent years more and more applications allow the embedding of dynamic languages that
interact with the rest of the program. Examples for this applications are Webbrowsers with
their embedded Javascript engines however there are also some areas where the usage of
dynamic languages was previously considered unusable. There are now IOT 7 platforms that
allow embedding Javascript 8 or Python 9 code in the application. This new application
areas boosted the usage of these dynamic languages.

There has been a lot effort put into the analysis of dynamic languages e.g. advanced
string domains [1], loop sensitivity [9], or on demand backwards analysis [17]. All of these
solutions need to find a trade-off between enough precision and analysis time. Researcher
who are using dynamic analysis methods can rely on the already tremendous work put into
optimising existing runtimes whereas static interpreters need to provide there own, often
slower, abstract runtimes. This leads to a large performance gap between the two analysis
approaches. In a comparison between the static analyser SAFE [10] and the dynamic analyser
Jaling [14] using the subset of, by both analysable, tests from the SunSpider 10 benchmark
the dynamic analyser turned out 34.8x as fast as SAFE [12, Fig. 1].

J. Park et al. worked out a way to instrument this speed advantage into Abstract
Interpretation and preserve the soundness guarantee [12]. They are combining the Abstract
Interpretation methods with sealed execution which is similar to dynamic symbolic execution.
Instead of using symbolic variables to execute the program they are using sealed values. A
sealed value is representing the existence of an abstract value in a program. The sealed
value does especially not hold information about the content of the abstract value except the
abstract value corresponds to exactly one concrete value. It can be seen as a symbol to track

7 Internet of Things
8 https://www.espruino.com
9 https://micropython.org/
10 https://webkit.org/perf/sunspider/sunspider.html
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the use of an abstract value through the code. The run of the program with the concrete
sealed values is then called a sealed execution. [12]

The Abstract Interpretation is then started at the program entry point. When an abstract
interpreter encounters a program point which to analyse would reduce precision or possibly
increase the analysis time by a large factor, the sealed execution can be utilised as a Dynamic
shortcut through the program part.

Listing 1 Example code with access to a sealed value
1 var v = ... // an abstract value
2 var obj = { p1: v };
3 var x = 4 + obj.p1;

D̂ → Dω × D̂δ As a first step the current abstract state gets converted to a symbolic state
where each variable in the program gets replaced by a sealed value, except its abstract
value can be directly mapped to a single concrete value. To get a concrete value from an
abstract value the concretization function γ [4] can be utilised.

Execute code Concrete code for the next instructions after the current program point and
Dδ is generated and executed until a value represented by sealed value is accessed. On
access of a sealed value the end of a sealed execution is necessary to guarantee overall
soundness. Note that in listing 1 even though obj contains an abstract value v the second
line is not an access to a sealed variable as the value of v is only passed on and not used.
Line three is a sealed access as the value of p1.obj (v) is needed for the addition operation.

Dδ → D̂ The symbolic state corresponding to the program point just before the access to
the sealed value is converted back to an abstract state. Concrete values get mapped by
applying the abstraction function α and as sealed values are just references to abstract
values the referenced values from the previous abstract state can be copied.

The Abstract Interpretation then continues until the next opportunity of a dynamic shortcut
is reached. The authors found during testing,that when using dynamic shortcuts the analyser
outperformed the same analyser without dynamic shortcuts by 7.81x. Also they found that
the number of false positive tests could be reduced by an average of 92 %.

3.3 Determinacy analysis
The above mentioned methods all are similar in the way they are interleaving the Abstract
Interpretation with the dynamic analysis part. Therefore, various different converter functions
are required to convert between the different domains. SRA and the dynamic shortcut
techniques also require some modifications to the used domains. This makes them harder
to implement into existing interpreters. A different approach is not to interleave the static
and dynamic analysis part but apply them in sequence. Schäfer et al. developed a method
to soundly find determinate (non changing) variables based on dynamic flow analysis of a
program [13].. "Roughly speaking, a variable x is determinate at a program point p if x must
have the same value, say v, whenever program execution reaches p"[13, p. 1]. Although such
information can also be detected statically utilising a call graph this is often not feasible due
to dynamic language features such as eval 11 [16, 13]. Therefore, the dynamic approach is
better suited.

11 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
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In the methodology proposed by Schäfer et al. first a dynamic flow analysis is done to
find determinate variables. To stay sound all possible program paths must be checked.

To guarantee this Schäfer et al. are using counterfactual execution. If the decision which
branch in a program should be taken during a concrete execution is only dependent on
determinate variables then only the chosen branch gets analysed. Otherwise the remaining
possible branches are also analysed and after executing the effects of any writing to local
variables or the heap are undone and the accessed variables are marked as indeterminate.

In the begin of the analysis all variables are considered determinate. "A variable becomes
indeterminate when it is assigned an expression involving other indeterminate variables, but
also when it is modified in code that is control dependent on an indeterminate condition and
hence not necessarily run in every execution" [13, p. 3]. A variable also gets indeterminate if
it is marked indeterminate during counterfactual execution.

Listing 2 Code taken from [8] showcasing a use of eval that can be replaced by static code
1 ivymap = window . ivymap || {};
2 function showIvyViaJs ( locationId ) {
3 var _f = undefined ;
4 var _fconv = " ivymap [\\’"+ locationId +"\\’]";
5 try {
6 _f = eval( _fconv );
7 if (_f!= undefined ) {
8 _f ();
9 }

10 } catch (e) {}
11 }
12 showIvyViaJs (’pc.sy. banner .tcck.’);
13 showIvyViaJs (’pc.sy. banner . duilian .’);

After a full run determinacy facts are generated that can be used to transform the
program to a simpler to analyse one. This information can be used to replace dynamic
language features with static analysable code. In listing 2 the strings passed to the eval
function are determinate and so the dynamic analysis produces the following determinacy
facts:

J_fconvK14→6 = ”ivymap[’pc.sy.banner.tcck.’]” (1)
J_fconvK15→6 = ”ivymap[’pc.sy.banner.duilian.’]” (2)

The facts provide the information that every time the program reaches line 14(1) / 15(2)
the variable _fconv on line 6 of listing 2 contains either: ivymap[’pc.sy.banner.tcck.’](1) or
ivymap[’pc.sy.banner.duilian.’](2). Based on this information the call to eval on line 6 can
be replaced with concrete code and easily analysed by Abstract Interpretation.

4 Conclusion

Abstract Interpretation has some well known problems that are no issues in the world of
dynamic analysis. The combination of both techniques is a good way to compensate for
weaknesses in both approaches. Still some combinations, as in SRA, provide possible unsound
results but especially in the SRA case the pure abstract approach was also potentially unsound
due to human errors. Also in some cases a unsound fast result is better than no result or a
timeout. For sound combinations of dynamic analysis and Abstract Interpretation there is
often no counterargument, except implementation work, to combine both as the precision
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and analysis speed is often improved. Frameworks such as Concerto can help to reduce the
combination effort but for easy integration a standardised interface to communicate between
different analysers might be helpful.

5 Further work

Shiyi Wei and Barbara G. Ryder and created a framework to combine static and dynamic
taint analysis into blended taint analysis [20] increasing the detection rate over purely static
analysis. Patrice Godefroid, Nils Klarlund and Koushik Sen created DART [5] a framework to
automatically generate program tests, combining random interpretation [6] with several static
and dynamic analysing methods. Benno Stein, Benjamin Barslev Nielsen, Bor-Yuh Evan
Chang, and Anders Möller present a technique to combine a non-relational static analysis
soundly with a value refinement mechanism to increase precision on demand at precision
critical locations [17]. Cyrille Artho and Armin Biere crated JNuke [2] which reduces the
implementation cost of a combined interpreter by sharing the used algorithm between the
concrete and abstract domains.
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